

    
      
          
            
  



Raspberry PI MAX7219 driver

[image: https://travis-ci.org/rm-hull/max7219.svg?branch=master]
 [https://travis-ci.org/rm-hull/max7219]Interfacing LED matrix displays with the MAX7219 driver
[PDF datasheet] [https://raw.github.com/rm-hull/max7219/master/docs/MAX7219-datasheet.pdf]
in Python (both 2.7 and 3.x are supported) using hardware SPI on the Raspberry Pi. A LED matrix can be acquired for a few pounds from outlets like
Banggood [http://www.banggood.com/MAX7219-Dot-Matrix-Module-DIY-Kit-SCM-Control-Module-For-Arduino-p-72178.html?currency=GBP].
Likewise 7-segment displays are available from Ali-Express [http://www.aliexpress.com/item/MAX7219-Red-Module-8-Digit-7-Segment-Digital-LED-Display-Tube-For-Arduino-MCU/1449630475.html] or Ebay [http://www.ebay.com/itm/-/172317726225].

This library supports:


	multiple cascaded devices

	LED matrix and seven-segment variants



[image: max7219 matrix]

Python Usage

For the matrix device, initialize the matrix class:

import max7219.led as led

device = led.matrix()
device.show_message("Hello world!")





For the 7-segment device, initialize the sevensegment class:

import max7219.led as led

device = led.sevensegment()
device.write_number(deviceId=0, value=3.14159)





The MAX7219 chipset supports a serial 16-bit register/data buffer which is
clocked in on pin DIN every time the clock edge falls, and clocked out on DOUT
16.5 clock cycles later. This allows multiple devices to be chained together.

When initializing cascaded devices, it is necessary to specify a cascaded=...
parameter, and generally methods which target specific devices will expect a
deviceId=... parameter, counting from zero.

For more information, see https://max7219.readthedocs.io/

[image: max7219 sevensegment]



Pre-requisites

By default, the SPI kernel driver is NOT enabled on the Raspberry Pi Raspian image.
You can confirm whether it is enabled using the shell commands below:

$ lsmod | grep -i spi
spi_bcm2835             7424  0





Depending on the kernel version, this may report spi_bcm2807 rather than spi_bcm2835 -
either should be adequate.

And that the devices are successfully installed in /dev:

$ ls -l /dev/spi*
crw------- 1 root root 153, 0 Jan  1  1970 /dev/spidev0.0
crw------- 1 root root 153, 1 Jan  1  1970 /dev/spidev0.1





If you have no /dev/spi files and nothing is showing using lsmod then this
implies the kernel SPI driver is not loaded. Enable the SPI as follows (steps
taken from https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial#spi-on-pi):


	Run sudo raspi-config

	Use the down arrow to select 9 Advanced Options

	Arrow down to A6 SPI.

	Select yes when it asks you to enable SPI,

	Also select yes when it asks about automatically loading the kernel module.

	Use the right arrow to select the <Finish> button.

	Select yes when it asks to reboot.



[image: https://cloud.githubusercontent.com/assets/1915543/16681787/b615b20c-44ee-11e6-9533-b0dce2b007b1.png]
After rebooting re-check that the lsmod | grep -i spi command shows whether
SPI driver is loaded before proceeding. If you are stil experiencing problems, refer to the official
Raspberry Pi SPI troubleshooting guide [https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md#troubleshooting] for further details, or ask a new question [https://github.com/rm-hull/max7219/issues/new] - but please remember to add as much detail as possible.




GPIO pin-outs

The breakout board has two headers to allow daisy-chaining:










	Board Pin
	Name
	Remarks
	RPi Pin
	RPi Function


	1
	VCC
	+5V Power
	2
	5V0


	2
	GND
	Ground
	6
	GND


	3
	DIN
	Data In
	19
	GPIO 10 (MOSI)


	4
	CS
	Chip Select
	24
	GPIO 8 (SPI CE0)


	5
	CLK
	Clock
	23
	GPIO 11 (SPI CLK)





Note: See below for cascading/daisy-chaining, power supply and level-shifting.




Installing the library

Note: The library has been tested against Python 2.7 and 3.4. For Python3 installation, substitute pip ⇒ pip3, python ⇒ python3, python-dev ⇒ python3-dev, and python-pip ⇒ python3-pip in the instructions below.

Install the latest version of the library directly from PyPI [https://pypi.python.org/pypi?:action=display&name=max7219]:

$ sudo apt-get install python-dev python-pip
$ sudo pip install max7219





Alternatively, clone the code from github:

$ git clone https://github.com/rm-hull/max7219.git
$ cd max7219
$ sudo pip install -e .





Next, follow the specific steps below for your OS.


Raspbian

$ cd max7219
$ sudo apt-get install python-dev python-pip
$ sudo pip install spidev
$ sudo python setup.py install








Arch Linux

cd max7219
pacman -Sy base-devel python2
pip install spidev
python2 setup.py install










Cascading, power supply & level shifting

The MAX7219 chip supports cascading devices by connecting the DIN of one chip to the DOUT
of another chip. For a long time I was puzzled as to why this didnt seem to work properly
for me, despite spending a lot of time investigating and always assuming it was a bug in
code.


	Because the Raspberry PI can only supply a limited amount of power from the 5V rail,
it is recommended that any LED matrices are powered separately by a 5V supply, and grounded
with the Raspberry PI. It is possible to power one or two LED matrices directly from a
Raspberry PI, but any more is likely to cause intermittent faults & crashes.

	Also because the GPIO ports used for SPI are 3.3V, a simple level shifter (as per the diagram
below) should be employed on the DIN, CS and CLK inputs to boost the levels to 5V. Again it
is possible to drive them directly by the 3.3V GPIO pins, it is just outside tolerance, and
will result in intermittent issues.



[image: max7219 levelshifter]
Despite the above two points, I still had no success getting cascaded matrices
to work properly.  Revisiting the wiring, I had connected the devices in serial
connecting the out pins of one device to the in pins of another. This just
produced garbled images.

Connecting the CLK lines on the input side all together worked first time. I
can only assume that there is some noise on the clock line, or a dry solder
joint somewhere.

[image: max7219 cascaded]
If you have more than one device and they are daisy-chained together, you can initialize the
library with:

import max7219.led as led

device = led.matrix(cascaded = 3)
device.show_message("Hello world!")





To address a specific device, most other methods expect a deviceId=N parameter
(where N=0..cascaded-1).




Examples

Run the example code as follows:

$ sudo python examples/matrix_test.py





or:

$ sudo python examples/sevensegment_test.py





Note: By default, SPI is only accessible by root (hence using sudo above). Follow these [http://quick2wire.com/non-root-access-to-spi-on-the-pi] instructions to create an spi group, and adding your user to that group, so you don’t have to run as root.




References


	http://hackaday.com/2013/01/06/hardware-spi-with-python-on-a-raspberry-pi/

	http://gammon.com.au/forum/?id=11516

	http://louisthiery.com/spi-python-hardware-spi-for-raspi/

	http://www.brianhensley.net/2012/07/getting-spi-working-on-raspberry-pi.html

	http://raspi.tv/2013/8-x-8-led-array-driven-by-max7219-on-the-raspberry-pi-via-python

	http://quick2wire.com/non-root-access-to-spi-on-the-pi






Contributing

Pull requests (code changes / documentation / typos / feature requests / setup) are gladly accepted. If you are
intending some large-scale changes, please get in touch first to make sure we’re on the same page: try and include
a docstring for any new methods, and try and keep method bodies small, readable and PEP8-compliant.


Contributors


	Thijs Triemstra (@thijstriemstra)

	Jon Carlos (@webmonger)

	Unattributed (@wkapga)

	Taras (@tarasius)

	Brice Parent (@agripo)








License

The MIT License (MIT)

Copyright (c) 2016 Richard Hull

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.






Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    

  

    
      
          
            

   Python Module Index


   
   m
   


   
     		 	

     		
       m	

     
       	[image: -]
       	
       max7219	
       

     
       	
       	   
       max7219.font	
       

     
       	
       	   
       max7219.led	
       

     
       	
       	   
       max7219.rotate8x8	
       

   



          

      

      

    

  

    
      
          
            

Index



 B
 | C
 | D
 | F
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | W
 


B


  	
      	brightness() (max7219.led.device method)


  





C


  	
      	clear() (max7219.led.device method)


  

  	
      	command() (max7219.led.device method)


      	constants (class in max7219.led)


  





D


  	
      	device (class in max7219.led)


  





F


  	
      	flush() (max7219.led.device method)


  





I


  	
      	invert() (max7219.led.matrix method)


  





L


  	
      	letter() (max7219.led.matrix method)

      
        	(max7219.led.sevensegment method)


      


  





M


  	
      	matrix (class in max7219.led)


      	max7219 (module)


      	max7219.font (module)


      	max7219.led (module)


      	max7219.rotate8x8 (module)


      	MAX7219_REG_DECODEMODE (max7219.led.constants attribute)


      	MAX7219_REG_DIGIT0 (max7219.led.constants attribute)


      	MAX7219_REG_DIGIT1 (max7219.led.constants attribute)


      	MAX7219_REG_DIGIT2 (max7219.led.constants attribute)


  

  	
      	MAX7219_REG_DIGIT3 (max7219.led.constants attribute)


      	MAX7219_REG_DIGIT4 (max7219.led.constants attribute)


      	MAX7219_REG_DIGIT5 (max7219.led.constants attribute)


      	MAX7219_REG_DIGIT6 (max7219.led.constants attribute)


      	MAX7219_REG_DIGIT7 (max7219.led.constants attribute)


      	MAX7219_REG_DISPLAYTEST (max7219.led.constants attribute)


      	MAX7219_REG_INTENSITY (max7219.led.constants attribute)


      	MAX7219_REG_NOOP (max7219.led.constants attribute)


      	MAX7219_REG_SCANLIMIT (max7219.led.constants attribute)


      	MAX7219_REG_SHUTDOWN (max7219.led.constants attribute)


  





N


  	
      	NUM_DIGITS (max7219.led.device attribute)


  





O


  	
      	orientation() (max7219.led.matrix method)


  





P


  	
      	pixel() (max7219.led.matrix method)


  

  	
      	proportional (class in max7219.font)


  





R


  	
      	rotate() (in module max7219.rotate8x8)


  

  	
      	rotate_left() (max7219.led.device method)


      	rotate_right() (max7219.led.device method)


  





S


  	
      	scroll_down() (max7219.led.matrix method)


      	scroll_left() (max7219.led.device method)


      	scroll_right() (max7219.led.device method)


      	scroll_up() (max7219.led.matrix method)


  

  	
      	set_byte() (max7219.led.device method)


      	sevensegment (class in max7219.led)


      	show_message() (max7219.led.matrix method)

      
        	(max7219.led.sevensegment method)


      


  





W


  	
      	write_number() (max7219.led.sevensegment method)


  

  	
      	write_text() (max7219.led.sevensegment method)


  







          

      

      

    

  

    
      
          
            
  
max7219



	max7219 package
	Submodules

	max7219.font module

	max7219.led module

	max7219.rotate8x8 module

	Module contents













          

      

      

    

  

    
      
          
            
  
max7219 package


Submodules




max7219.font module


	
class max7219.font.proportional(font)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Wraps an existing font array, and on on indexing, trims any leading
or trailing zero column definitions. This works especially well
with scrolling messages, as interspace columns are squeezed to a
single pixel.








max7219.led module


	
class max7219.led.constants

	Bases: object [https://docs.python.org/2/library/functions.html#object]


	
MAX7219_REG_DECODEMODE = 9

	




	
MAX7219_REG_DIGIT0 = 1

	




	
MAX7219_REG_DIGIT1 = 2

	




	
MAX7219_REG_DIGIT2 = 3

	




	
MAX7219_REG_DIGIT3 = 4

	




	
MAX7219_REG_DIGIT4 = 5

	




	
MAX7219_REG_DIGIT5 = 6

	




	
MAX7219_REG_DIGIT6 = 7

	




	
MAX7219_REG_DIGIT7 = 8

	




	
MAX7219_REG_DISPLAYTEST = 15

	




	
MAX7219_REG_INTENSITY = 10

	




	
MAX7219_REG_NOOP = 0

	




	
MAX7219_REG_SCANLIMIT = 11

	




	
MAX7219_REG_SHUTDOWN = 12

	








	
class max7219.led.device(cascaded=1, spi_bus=0, spi_device=0, vertical=False)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Base class for handling multiple cascaded MAX7219 devices.
Callers should generally pick either the sevensegment or
matrix subclasses instead depending on which application
is required.

A buffer is maintained which holds the bytes that will be cascaded
every time flush() is called.


	
NUM_DIGITS = 8

	




	
brightness(intensity)

	Sets the brightness level of all cascaded devices to the same
intensity level, ranging from 0..15. Note that setting the brightness
to a high level will draw more current, and may cause intermittent
issues / crashes if the USB power source is insufficient.






	
clear(deviceId=None)

	Clears the buffer the given deviceId if specified (else clears all
devices), and flushes.






	
command(register, data)

	Sends a specific register some data, replicated for all cascaded
devices






	
flush()

	For each digit/column, cascade out the contents of the buffer
cells to the SPI device.






	
rotate_left(redraw=True)

	Scrolls the buffer one column to the left. The data that scrolls off
the left side re-appears at the right-most position. If redraw
is not suppled, or left set to True, will force a redraw of _all_ buffer
items






	
rotate_right(redraw=True)

	Scrolls the buffer one column to the right. The data that scrolls off
the right side re-appears at the left-most position. If redraw
is not suppled, or left set to True, will force a redraw of _all_ buffer
items






	
scroll_left(redraw=True)

	Scrolls the buffer one column to the left. Any data that scrolls off
the left side is lost and does not re-appear on the right. An empty
column is inserted at the right-most position. If redraw
is not suppled, or set to True, will force a redraw of _all_ buffer
items






	
scroll_right(redraw=True)

	Scrolls the buffer one column to the right. Any data that scrolls off
the right side is lost and does not re-appear on the left. An empty
column is inserted at the left-most position. If redraw
is not suppled, or set to True, will force a redraw of _all_ buffer
items






	
set_byte(deviceId, position, value, redraw=True)

	Low level mechanism to set a byte value in the buffer array. If redraw
is not suppled, or set to True, will force a redraw of _all_ buffer
items: If you are calling this method rapidly/frequently (e.g in a
loop), it would be more efficient to set to False, and when done,
call flush().

Prefer to use the higher-level method calls in the subclasses below.










	
class max7219.led.matrix(cascaded=1, spi_bus=0, spi_device=0, vertical=False)

	Bases: max7219.led.device

Implementation of MAX7219 devices cascaded with a series of 8x8 LED
matrix devices. It provides a convenient methods to write letters
to specific devices, to scroll a large message from left-to-right, or
to set specific pixels. It is assumed the matrices are linearly aligned.


	
invert(value, redraw=True)

	Sets whether the display should be inverted or not when displaying
letters.






	
letter(deviceId, asciiCode, font=None, redraw=True)

	Writes the ASCII letter code to the given device in the specified font.






	
orientation(angle, redraw=True)

	Sets the orientation (angle should be 0, 90, 180 or 270) at which
the characters are displayed.






	
pixel(x, y, value, redraw=True)

	Sets (value = 1) or clears (value = 0) the pixel at the given
co-ordinate. It may be more efficient to batch multiple pixel
operations together with redraw=False, and then call
flush() to redraw just once.






	
scroll_down(redraw=True)

	Scrolls the underlying buffer (for all cascaded devices) down one pixel






	
scroll_up(redraw=True)

	Scrolls the underlying buffer (for all cascaded devices) up one pixel






	
show_message(text, font=None, delay=0.05, always_scroll=False)

	Shows a message on the device. If it’s longer then the total width
(or always_scroll=True), it transitions the text message across the
devices from right-to-left.










	
class max7219.led.sevensegment(cascaded=1, spi_bus=0, spi_device=0, vertical=False)

	Bases: max7219.led.device

Implementation of MAX7219 devices cascaded with a series of seven-segment
LEDs. It provides a convenient method to write a number to a given device
in octal, decimal or hex, flushed left/right with zero padding. Base 10
numbers can be either integers or floating point (with the number of
decimal points configurable).


	
letter(deviceId, position, char, dot=False, redraw=True)

	Looks up the most appropriate character representation for char
from the digits table, and writes that bitmap value into the buffer
at the given deviceId / position.






	
show_message(text, delay=0.4)

	Transitions the text message across the devices from left-to-right






	
write_number(deviceId, value, base=10, decimalPlaces=0, zeroPad=False, leftJustify=False)

	Formats the value according to the parameters supplied, and displays
on the specified device. If the formatted number is larger than
8 digits, then an OverflowError is raised.






	
write_text(deviceId, text)

	Outputs the text (as near as possible) on the specific device. If
text is larger than 8 characters, then an OverflowError is raised.












max7219.rotate8x8 module


	
max7219.rotate8x8.rotate(src)

	Rotate an 8x8 tile (8-element array of 8-bit numbers) 90 degrees
counter-clockwise by table lookup. Large bitmaps can be rotated
an 8x8 tile at a time. The extraction is done a nybble at a time
to reduce the size of the tables.








Module contents

Raspberry Pi MAX7219 Driver.







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		Raspberry PI MAX7219 driver


      


    
  

_static/down.png





_static/up.png





_static/comment-close.png





_static/comment.png





_static/plus.png





_static/down-pressed.png





_static/comment-bright.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/ajax-loader.gif





